Fraud Blocker Skip to main content

Amino Acid Collection

Amino acids are the building blocks of life, essential for the creation and functioning of proteins within our bodies

Background imageAmino Acid Collection: Creatine amino acid molecule

Creatine amino acid molecule
Creatine, molecular model. This amino acid acts as an energy store for the contraction of muscle. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (white)

Background imageAmino Acid Collection: Insulin crystals, light micrograph C017 / 8249

Insulin crystals, light micrograph C017 / 8249
Insulin. Polarised light micrograph (PLM) of crystals of the hormone insulin. The insulin molecule is made up of two chains of amino acids (A & B chains)

Background imageAmino Acid Collection: Aspartic molecule

Aspartic molecule
Aspartic acid molecule. Alpha-amino acid nonessential in mammals. Precursor to several amino acids including methionine, threonine, isoleucine and lysine

Background imageAmino Acid Collection: Serine molecule

Serine molecule
Serine, molecular model. Non-essential proteinogenic amino acid. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green), nitrogen (blue) and oxygen (red)

Background imageAmino Acid Collection: Alanine, molecular model

Alanine, molecular model
Alanine. Molecular model of the amino acid alanine. Its chemical formula is C3.H7.N.O3. Atoms are represented as balls and are colour-coded: carbon (blue), hydrogen (gold)

Background imageAmino Acid Collection: Ricin A-chain, artwork C017 / 3653

Ricin A-chain, artwork C017 / 3653
Ricin A-chain. Computer artwork showing the enzymatically active A-chain from a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (seen here) and B (not shown)

Background imageAmino Acid Collection: Ricin molecule, artwork C017 / 3652

Ricin molecule, artwork C017 / 3652
Ricin molecule. Computer artwork showing the structure of a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (yellow) and B (blue)

Background imageAmino Acid Collection: Ricin molecule, artwork C017 / 3651

Ricin molecule, artwork C017 / 3651
Ricin molecule. Computer artwork showing the structure of a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (yellow) and B (blue)

Background imageAmino Acid Collection: Ricin molecule, artwork C017 / 3650

Ricin molecule, artwork C017 / 3650
Ricin molecule. Computer artwork showing the structure of a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (yellow) and B (blue)

Background imageAmino Acid Collection: Circular DNA molecule, space artwork F006 / 7089

Circular DNA molecule, space artwork F006 / 7089
Circular DNA (deoxyribonucleic acid) molecule, computer artwork and space nebula artwork, depicting origin of life

Background imageAmino Acid Collection: Tablet computer, insulin molecule F006 / 6311

Tablet computer, insulin molecule F006 / 6311
Tablet computer showing a part of the molecule of human insulin. A single insulin molecule is made up of two chains of amino acids, the A and B chains, which are held together by di-sulphide bridges

Background imageAmino Acid Collection: Circular DNA molecule, space artwork F006 / 7077

Circular DNA molecule, space artwork F006 / 7077
Circular DNA (deoxyribonucleic acid) molecule, computer artwork and space nebula artwork, depicting origin of life

Background imageAmino Acid Collection: Circular DNA molecule, space artwork F006 / 7087

Circular DNA molecule, space artwork F006 / 7087
Circular DNA (deoxyribonucleic acid) molecule, computer artwork and space nebula artwork, depicting origin of life

Background imageAmino Acid Collection: Amino acid structures F007 / 6424

Amino acid structures F007 / 6424
Amino acid structures. Chemical structures of 20 of the 22 standard amino acids

Background imageAmino Acid Collection: Glycine riboswitch molecule F007 / 9921

Glycine riboswitch molecule F007 / 9921
Molecular model of the bacterial glycine riboswitch. This is an RNA element that can bind the amino acid glycine. Glycine riboswitches usually consist of two metabolite-binding aptamer domains tandem

Background imageAmino Acid Collection: Glycine riboswitch molecule F007 / 9906

Glycine riboswitch molecule F007 / 9906
Molecular model of the bacterial glycine riboswitch. This is an RNA element that can bind the amino acid glycine. Glycine riboswitches usually consist of two metabolite-binding aptamer domains tandem

Background imageAmino Acid Collection: tRNA molecule

tRNA molecule
Transfer RNA (tRNA), molecular model. tRNA (transfer ribonucleic acid) translates messenger RNA (mRNA) into a protein product. Each tRNA molecule carries a specific amino acid, in this case tryptophan

Background imageAmino Acid Collection: Lysine molecule

Lysine molecule
Lysine, molecular model. Essential alpha-amino acid. Necessary building block for all protein in the body. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageAmino Acid Collection: Alanine molecule

Alanine molecule
Alanine, molecular model. Alpha-amino acid that can be synthesised by the body. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageAmino Acid Collection: Proline molecule

Proline molecule
Proline, molecular model. Non-essential alpha-amino acid, one of the 20 DNA-encoded amino acids. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageAmino Acid Collection: Leucine molecule

Leucine molecule
Leucine, molecular model. Essential alpha-amino acid contained in eggs, soy protein, seaweed, turkey, chicken, lamb, cheese, and fish

Background imageAmino Acid Collection: Cysteine Molecule

Cysteine Molecule
Cysteine, molecular model. Non-essential alpha-amino acid. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green), nitrogen (blue)

Background imageAmino Acid Collection: Glutamic acid molecule

Glutamic acid molecule
Glutamic acid, molecular model. Non-essential amino-acid. Important neurotransmitter. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageAmino Acid Collection: Glutamine molecule

Glutamine molecule
Proline, molecular model. Non-essential alpha-amino acid, one of the 20 DNA-encoded amino acids. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageAmino Acid Collection: Isoleucine molecule

Isoleucine molecule
Isoleucine, molecular model. Essential alpha-amino acid contained in eggs, soy protein, seaweed, turkey, chicken, lamb, cheese, and fish

Background imageAmino Acid Collection: Threonine molecule

Threonine molecule
Threonine, molecular model. Essential alpha-amino acid and one of the 20 proteinogenic amino acids. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageAmino Acid Collection: Valine molecule

Valine molecule
Valine, molecular model. Essential alpha-amino acid and one of the 20 proteinogenic amino acids. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageAmino Acid Collection: Phenylalanine molecule

Phenylalanine molecule
Phenylalanine, molecular model. Essential alpha-amino acid, one of the 20 common amino acids used to form proteins. Atoms are represented as spheres and are colour-coded: carbon (grey)

Background imageAmino Acid Collection: Tryptophan molecule

Tryptophan molecule
Tryptophan, molecular model. Essential amino acid and one of the 20 standard amino acids. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green)

Background imageAmino Acid Collection: Methionine molecule

Methionine molecule
Methionine, molecular model. Essential alpha-amino acid. Atoms are represented as spheres and are colour-coded: carbon (grey), hydrogen (blue-green), nitrogen (blue), oxygen (red) and sulfur (yellow)

Background imageAmino Acid Collection: Ricin A-chain, artwork C017 / 3654

Ricin A-chain, artwork C017 / 3654
Ricin A-chain. Computer artwork showing the enzymatically active A-chain from a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (seen here) and B (not shown)

Background imageAmino Acid Collection: Ricin molecule, artwork C017 / 3649

Ricin molecule, artwork C017 / 3649
Ricin molecule. Computer artwork showing the structure of a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (yellow) and B (blue)

Background imageAmino Acid Collection: Histidine molecule

Histidine molecule
Histidine, molecular model. Essential amino acid in humans and other mammals. One of the 22 proteinogenic amino acids. Atoms are represented as spheres and are colour-coded: carbon (grey)

Background imageAmino Acid Collection: Tyrosine molecule

Tyrosine molecule
Tyrosine, molecular model. Non-essential amino acid; one of the 20 amino acids used to synthesize proteins. Atoms are represented as spheres and are colour-coded: carbon (grey)

Background imageAmino Acid Collection: Asparagine molecule

Asparagine molecule
Asparagine, molecular model. Nonessential amino acid. Asparagine residues are often found near the beginning and end of alpha-helices and in turn motifs in beta sheets



All Professionally Made to Order for Quick Shipping

Amino acids are the building blocks of life, essential for the creation and functioning of proteins within our bodies. From the intricate structure of a creatine amino acid molecule to the mesmerizing beauty of insulin crystals under a light micrograph, these tiny entities hold immense power. In a captivating conceptual image, we witness the very essence of creation itself as amino acids come together to form complex structures. Among them, we find aspartic and serine molecules, each playing their unique role in sustaining life's delicate balance. The molecular models reveal an elegant dance between atoms that make up alanine, showcasing its significance in protein synthesis. Meanwhile, artwork depicting ricin A-chain and ricin molecules reminds us of both nature's wonders and potential dangers lurking within these compounds. As we explore further into this microscopic world, our gaze falls upon a circular DNA molecule floating amidst vast cosmic space—an awe-inspiring reminder that even at such minuscule scales, life is intricately connected with the universe around us. And in an unexpected twist linking science with technology, a tablet computer displays an insulin molecule—a testament to how scientific advancements have revolutionized healthcare by harnessing the power of amino acids for therapeutic purposes. These hints paint just a fraction of the incredible story behind amino acids—their versatility and importance cannot be overstated. Whether it be fueling muscle growth or regulating blood sugar levels through insulin production, they truly embody the marvels hidden within every living organism on Earth.